Math Virtual Learning

Precalculus with Trigonometry

May 5, 2020

Precalculus with Trigonometry Lesson: May 5th, 2020

Objective/Learning Target:

Students will verify Trigonometric Identities using the Half-Angle Identities

Let's Get Started:

Watch the video below to see how to verify half-angle identities.
Watch Video: Master How to Verify a trigonometric identity using half angle formulas

Half Angle Identities

$$
\sin \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{2}} \text { or } \sin ^{2} x=\frac{1-\cos 2 x}{2}
$$

Recall these formulas while watching the video.

$$
\begin{aligned}
& \cos \frac{x}{2}= \pm \sqrt{\frac{1+\cos x}{2}} \text { or } \cos ^{2} x=\frac{1+\cos 2 x}{2} \\
& \tan \frac{x}{2}= \pm \sqrt{\frac{1-\cos x}{1+\cos x}} \text { or } \frac{\sin x}{1+\cos x} \text { or } \frac{1-\cos x}{\sin x}
\end{aligned}
$$

Example \#1:

Verify the given identity.

$\csc ^{2}\left(\frac{\theta}{2}\right)=\frac{2}{1-\cos \theta}$
$\frac{1}{\sin ^{2}\left(\frac{\theta}{2}\right)}=\frac{2}{1-\cos \theta}$
$\frac{1}{\left(\pm \sqrt{\frac{1-\cos \theta}{2}}\right)^{2}}=\frac{2}{1-\cos \theta}$
$\frac{1}{\left(\pm \sqrt{\frac{1-\cos \theta}{2}}\right)^{2}}=\frac{2}{1-\cos \theta}$
$\frac{\left(\frac{2}{1-\cos \theta}\right) 1}{\left.\frac{2}{1-\cos \theta}\right] \frac{1-\cos \theta}{2}}=\frac{2}{1-\cos \theta}$
$\frac{2}{1-\cos \theta}=\frac{2}{1-\cos \theta}$
csc is the reciprocal of sin
squaring the half-angle formula for sin
square root and the square cancel out
when dividing a fraction, multiply by the reciprocal

Example \#2:

Verify the given identity.

$\cot ^{2}\left(\frac{v}{2}\right)=\frac{\sec v+1}{\sec v-1}$
$\frac{1}{\tan ^{2}\left(\frac{v}{2}\right)}=\frac{\sec v+1}{\sec v-1}$
$\frac{1}{\left(\pm \sqrt{\frac{1-\cos v}{1+\cos v}}\right)^{2}}=\frac{\sec v+1}{\sec v-1}$
$\frac{1}{\left(\pm \sqrt{\frac{1-\cos v}{1+\cos v}}\right)^{2}}=\frac{\sec v+1}{\sec v-1}$

$$
\frac{\left(\frac{1+\cos v}{1-\cos v}\right) 1}{\left(\frac{\cos v}{1-\cos v} \frac{y \cos v}{1+\cos v}\right.}=\frac{\sec v+1}{\sec v-1}
$$

$$
\frac{\sec v(1+\cos v)}{\sec v(1-\cos v)}=\frac{\sec v+1}{\sec v-1}
$$

$$
\frac{\sec v+\cos v \sec v}{\sec v-\cos v \sec v}=\frac{\sec v+1}{\sec v-1}
$$

square root and the square cancel out
\tan is the reciprocal of cot
squaring the half-angle formula for tan
when dividing a fraction, multiply by the reciprocal
multiply the numerator and denominator by the same amount
since cos and sec are inverses, they multiply to equal 1

$$
\frac{\sec v+1}{\sec v-1}=\frac{\sec v+1}{\sec v-1}
$$

Practice

On a separate piece of paper, use the Half-Angle Identities to verify the following equations.

$$
\text { 1. } \sin ^{2}\left(\frac{x}{2}\right)=\frac{\csc x-\cot x}{2 \csc x}
$$

3. $\tan \left(\frac{\theta}{2}\right)=\csc \theta-\cot \theta$
4. $\cos ^{2}\left(\frac{x}{2}\right)=\frac{\sin x+\tan x}{2 \tan x}$
5. $\frac{1-\tan ^{2}\left(\frac{\theta}{2}\right)}{1+\tan ^{2}\left(\frac{\theta}{2}\right)}=\cos \theta$

Practice - ANSWERS

On a separate piece of paper, use the Half-Angle Identities to verify the following equations.

Worked out Solution for Questions 1 and 2:
Video 1: Verifying Trigonometric Identities Using Half Angle Formulas

1. $\sin ^{2}\left(\frac{x}{2}\right)=\frac{\csc x-\cot x}{2 \csc x}$

Solution at: Start of Video 1
2. $\cos ^{2}\left(\frac{x}{2}\right)=\frac{\sin x+\tan x}{2 \tan x}$

Solution at: 1:51 of Video 1

Worked out Solution for Questions 3 and 4
Video 2: How to verify half-angle identities for tangent
3. $\tan \left(\frac{\theta}{2}\right)=\csc \theta-\cot \theta$

Solution at: Start of Video 2

$$
\text { 4. } \frac{1-\tan ^{2}\left(\frac{\theta}{2}\right)}{1+\tan ^{2}\left(\frac{\theta}{2}\right)}=\cos \theta
$$

Solution at: 0:52 of Video 2

Additional Resource Videos: How to verify half-angle identities. Sec, csc, cot

Additional Practice:

Half-Angle Formulas (with solutions)
Examples and Exercises start about $2 / 3$ of the way down the page.

Double \& Half Angle Formulas Practice (no solutions)

Examples 6 \& 7 on page 613. Exercises 59-68 on page 615

